Dimensionality Reduction — Notes 3
نویسنده
چکیده
where the inf is taken over all admissible sequences. We also let dX(T ) denote the diameter of T with respect to norm ‖·‖X . For the remainder of this section we make the definitions πrx = argminy∈Tr‖y − x‖X and ∆rx = πrx− πr−1x. Throughout this section we let ‖ · ‖ denote the `2→2 operator norm in the case of matrix arguments, and the `2 norm in the case of vector arguments. Krahmer, Mendelson, and Rauhut showed the following theorem [KMR14].
منابع مشابه
2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملValiant Metric Embeddings , Dimension Reduction
In the previous lecture notes, we saw that any metric (X, d) with |X| = n can be embedded into R 2 n) under any the `1 metric (actually, the same embedding works for any `p metic), with distortion O(log n). Here, we describe an extremely useful approach for reducing the dimensionality of a Euclidean (`2) metric, while incurring very little distortion. Such dimension reduction is useful for a nu...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملA Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملOn the Use of Singular Value Decomposition for a Fast Intrusion Detection System
Traditionally, the application of data mining in intrusion detection systems (IDS) concentrates on the construction of operational IDSs. The main emphasis is on data mining steps, and other KDD (Knowledge Discovery in Databases) are largely ignored. The present study investigates the applicability of Spectral Analysis technique singular value decomposition (SVD) as a preprocessing step to reduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015